
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2021 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Arrays

© 2021 Arthur Hoskey. All
rights reserved.

Review - Memory

public class Date {

public int year;

public int month;

public int day;

}

public class Employee {

public int id;

public Date hired = new Date();

}

public static void main(String[] args)

{

int a; // Which memory area?

Employee e; // Which memory area?

e = new Employee(); // Which memory area?

}

Questions

How much memory is allocated on

the HEAP assuming 4 byte integers

and 4 byte pointers?

On the STACK?

Can a pointer be on the HEAP?

© 2021 Arthur Hoskey. All
rights reserved.

Review - Memory

public class Date {

public int year;

public int month;

public int day;

}

public class Employee {

public int id;

public Date hired = new Date();

}

public static void main(String[] args)

{

int a; // Which memory area?

Employee e; // Which memory area?

e = new Employee(); // Which memory area?

}

Questions

STACK = 8 bytes

HEAP = 20 bytes

Can a pointer be on the HEAP?

YES

© 2021 Arthur Hoskey. All
rights reserved.

Review - Memory

 new is called for Employee.

Stack

0 (a:int)

Heap

1000

1004

Memory

Location

21000

21004

21008

21012

21016

Memory

Location

1008

emp:Employee
0 (int:id)

21008 (Date:hired)

1012

1016

21000(emp:Employee)

hired:Date
0 (int:year)
0 (int:month)
0 (int:day)

© 2021 Arthur Hoskey. All
rights reserved.

Data Structures

 What is a data structure?

 Collections of related data items.

 Arrays are data structures consisting of
related data items of the same type.

 For example: all ints, all Strings, all
Person objects etc.

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Arrays have a fixed length (cannot change
the size).

 Once an array is created you cannot
change its size (there is a way around this
though).

 An array variable may be reassigned
such that it refers to a new array of a
different size.

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Array entries are called elements (or
components).

 Elements of an array can be either
primitive or reference types.

 The array itself is considered a reference
type because it is an object.

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Example Array:

 This array is called Num. It has 8
elements.

Num[0] →

Num[1] →

Num[2] →

Num[3] →

Num[4] →

Num[5] →

Num[6] →

Num[7] →

34

55

60

43

61

55

55

40

Fixed length.

8 elements in

this case.

Index

always

starts

from 0

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Declare an 8 element integer array called
Num:

Arrays are reference types

int[] Num = new int[8];

8 element array

Brackets signify an array

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Declare an 8 element integer array called
Num:

Arrays are reference types

int[] Num = new int[8];

8 element array

Brackets signify an array

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Could also declare and allocate memory in
two steps:

int[] Num; // Num variable

Num = new int[8]; // Allocate heap memory

Num = new int[16]; // Allocate heap memory

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Setting values in an array.

 Java arrays are "offset 0".

 This means that you start numbering
from 0 instead of 1.

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Setting values in an array.

 Set the value of the first element of the
array called Num to 66:

int[] Num = new int[8];

Num[0] = 66; // Index 0 is 1st element

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Setting values in an array.

 Set the value of the third element of the
array called Num to 75:

int[] Num = new int[8];

Num[2] = 75; // Index 2 is 3rd element

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Getting values in an array.

 Get the value of the first element in the
array:

int[] Num = new int[8];

int score;

score = Num[0]; // Get value of 1st element.

// Index of 1st element is 0.

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Getting values in an array.

 Get the value of the third element in the
array:

int[] Num = new int[8];

int score;

score = Num[2]; // Get value of 3rd element.

// Index of 3rd element is 2.

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 To get the number of elements in an array use
the following code:

int[] Num = new int[8];

System.out.println(Num.length);

© 2021 Arthur Hoskey. All
rights reserved.

In-Class Problem

 Do in-class problem for ch 7
(problem 1).

© 2021 Arthur Hoskey. All
rights reserved.

In-Class Problem

 Do in-class problem for ch 7
(problem 2).

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Arrays are reference types.

 You MUST call new to initialize them.

 What does an array look like in memory?

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 int[] Exam = new int[3]; // 3 elements in array

 [0]

 [1]

 [2]

Stack

21000(Exam:int[])

Heap

1000

1004

Memory

Location

21000

21008

Memory

Location

1008

21004

21012

21016

1012

1016

0 Num[0]

0 Num[1]

0 Num[2]

© 2021 Arthur Hoskey. All
rights reserved.

In-Class Problem

 Do in-class problem for ch 7
(problem 3).

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Array Initialization.

// Allocate AND initialize a 3 element array

int[] Num = { 75, 82, 95 };

Note: new is automatically called for you!

© 2021 Arthur Hoskey. All
rights reserved.

In-Class Problem

 Do in-class problem for ch 7
(problem 4).

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Arrays of reference types.

 An array itself is a reference type.

 Previously, we created an array of
integers. These array elements were all
primitive.

 We can also create arrays containing
objects that are references types.

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Now let’s create a Person type:

class Person

{

private String m_Name;

public Person(String name) { m_Name = name;}

public String GetName() { return m_Name; }

public void SetName(String name)

{ m_Name = name; }

}

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Create an array containing Person objects

// Allocate the 3 element array of Person

Person[] group = new Person[3];

// Call new FOR EACH element of the array

group[0] = new Person("Arthur");

group[1] = new Person("Aidan");

group[2] = new Person("Gareth");

© 2021 Arthur Hoskey. All
rights reserved.

In-Class Problem

 Do in-class problem for ch 7
(problem 5).

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Two-dimensional arrays

 Arrays of Arrays

 An array where each element is an
array.

 How do you declare a two-dimensional
array?

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

Code to create a two-dimensional array called "a":

int[][] a;

a = new int[3][4];

Here is what the array would look like:

There are three rows and four columns.

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Declare and initialize a two-dimensional array:

int[][] nums= { {20, 30, 40},

{50, 40, 20},

{70, 10, 30} };

 This array has three rows and three columns.

 How do you access elements of a two-
dimensional array?

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Need to specify the index for both the
row and the column.

nums[0][2]

This will access row 0 and column 2 of
the array variable num.

 How do you print all the elements of a
two-dimensional array?

© 2021 Arthur Hoskey. All
rights reserved.

Arrays

 Print all the elements of the two-
dimensional array:

for (int i=0; i<nums.length; i++)

{

for (int k=0; k<nums[i].length; k++)

{

System.out.println(nums[i][k]);

}

}

© 2021 Arthur Hoskey. All
rights reserved.

Jagged Array

 Each row in a Java two-dimensional array
does NOT have to be the same size.

 This is called a jagged array.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Jagged Array Example

int[][] myA = { { 3, 4, 5 }, { 77, 50 }};

for (int i = 0; i < myA.length; i++) {

for (int j = 0; j < myA[i].length; j++)

{

System.out.print(myA[i][j] + " ");

}

System.out.println();

}

© 2021 Arthur Hoskey. All
rights reserved.

class Employee {

private int m_Id;

public int GetId () {

return m_Id;

}

public void SetId(int id) {

m_Id = id

}

}

// The following code is located in main in another file…

Employee[] a;

a = new Employee[3];

a[0].SetId(100);

Employee class

definition

© 2021 Arthur Hoskey. All
rights reserved.

Memory

Call new for array

What will happen

when this runs?

Memory

NullPointerException – NEW NOT CALLED ON a[0]

Stack

2100 (a:Employee[])

Heap

1000

1004

Memory

Location

2100

Memory

Location

1008

2104

1012

1016

null (a[0]:Employee)
null (a[1]:Employee)
null (a[2]:Employee)

2108

1020

© 2021 Arthur Hoskey. All
rights reserved.

2112

2116

2120

2124

2128

2132

class Employee {

private int m_Id;

private int m_Dept;

public int GetId () { return m_Id; }

public void SetId(int id) { m_Id = id; }

public int GetDept () { return m_Dept; }

public void SetDept(int dept) { m_Dept = dept; }

}

// The following code is located in main in another file…

Employee[] a;

a = new Employee[3];

a[0] = new Employee();

a[1] = new Employee();

a[2] = new Employee();

a[0].SetId(100);

Employee class

definition

© 2021 Arthur Hoskey. All
rights reserved.

Memory

Call new for each

element of the array

Call new for array

What will happen

when this runs?

Memory

a[0].SetId(100); // Fine new was called on a[0]

Stack

2100 (a:Employee[])

Heap

1000

1004

Memory

Location

2100

Memory

Location

1008

2104

2112

1012

1016 0 (int : m_Dept)
0 (int : m_Id)
0 (int: m_Dept)

100 (int : m_Id)
0 (int: m_Dept)
0 (int : m_Id)

2112 (a[0]:Employee)
2120 (a[1]:Employee)
2128 (a[2]:Employee)

2108

2116

2120

2124

1020

© 2021 Arthur Hoskey. All
rights reserved.

2128

2132

…

Arrays of Reference Types

 Setting up an array of a reference type:
1. Call new for the array itself. For example:

Employee[] a; // Declare the array variable

a = new Employee[3]; // Call new to allocate the array

2. Call new for EVERY element of the array. For
example:

a[0] = new Employee(); // Allocate the first element of the array

a[1] = new Employee(); // Allocate the second element of the array

a[2] = new Employee(); // Allocate the third element of the array

© 2021 Arthur Hoskey. All
rights reserved.

for-each

 The for statement also has another form designed for
iteration through Collections and arrays.

 This form is sometimes referred to as the enhanced for
statement, and can be used to make your loops more
compact and easy to read.

 More commonly referred to as a for-each.

 Here is an example…

 Taken from:
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html

© 2021 Arthur Hoskey. All
rights reserved.

http://docs.oracle.com/javase/tutorial/collections/index.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

for-each

// Collection of data

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

for (int item : numbers)

{

System.out.println("Count is: " + item);

}

 Taken from:
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html

Element

Data Type

Variable

for

“current”

element

Collection

to operator

on

Every time through the loop the

item variable will be filled with

data from the next element in the

collection

© 2021 Arthur Hoskey. All
rights reserved.

Iterators

 Here is a collection with data (could be an array):

 Users of the collection may or may not have direct access
to the items of the collection.

 There needs to be a way to "visit" each item of the
collection while not having direct access to it.

 That is what an iterator is for.

Collection

20 40 30 70

User of the collection

may not have direct

access to items it

contains

© 2021 Arthur Hoskey. All
rights reserved.

Iterators

 Iterators are helper classes that have access to the items
of the collection.

 An iterator points at one item of the class.

 In general, you can do the following with an iterator:
◦ Get the data at that item.

◦ Go to the next item in the collection.

◦ Remove the item from that collection.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Iterators

This iterator points at the first item of

the collection.

You can get the data (20) at that item

if you want but not the other items.

Collection

20 40 30 70

Iterator

If we told the iterator to go to the next item then it would look like the

following….

Iterator now points at the second

item.

You can get the data in the second

item (40) but not the other items.

Collection

20 40 30 70

Iterator

© 2021 Arthur Hoskey. All
rights reserved.

Iterators

 We will discuss creating and using iterators in chapter 10.

© 2021 Arthur Hoskey. All
rights reserved.

class - Arrays

 Arrays (java.util.Arrays) – Predefined class in the Java API.

 Contains static methods that implement common array
manipulations on normal Java arrays.

 For example:

double[] da = { 8.4, 9.3, 0.2, 7.9, 3.4 }

Arrays.sort(da); // Pass array into sort method, sorts array

// Prints array in sorted order: 0.2 3.4 7.9 8.4 9.3

for (double value : da) {

System.out.printf("%.1f ", value);

}

 Other Arrays static methods: binarySearch, equals, fill, arraycopy

© 2021 Arthur Hoskey. All
rights reserved.

class - ArrayList

 Predefined data structure in Java API.

 Collection that stores its objects just like a normal
array.

 Put values in and get values out of the collection
using an index.

 An ArrayList can resize itself to accommodate more
elements.

 Only stores nonprimitive types (cannot be used
to store int, double, etc…).

© 2021 Arthur Hoskey. All
rights reserved.

class - ArrayList

 ArrayList is a "generic" type (similar to templates in C++)

 Can dynamically change its size to accommodate more elements
(a normal Java array cannot resize). For example:

ArrayList<String> al;

al = new ArrayList<String>();

al.add("red"); // Adds “red” to end of ArrayList

al.add(0, "yellow"); // Adds “yellow at index 0

String s = al.get(0); // Gets element at index 0

al.clear(); // Removes all elements

 Textbook describes other methods such as: contains, indexOf,
remove, size etc…

Must indicate the data type of

elements that will be stored in

each instance

© 2021 Arthur Hoskey. All
rights reserved.

Review

 Is an array a primitive or reference type?

 What are the valid indexes for a 100
element array?

 Is an array that is declared in a method
stored on the stack or the heap or both?

 How many calls to new would be
necessary to create an array of 5
reference type elements?

© 2021 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides.

© 2021 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Review - Memory
	Slide 4: Review - Memory
	Slide 5: Review - Memory
	Slide 6: Data Structures
	Slide 7: Arrays
	Slide 8: Arrays
	Slide 9: Arrays
	Slide 10: Arrays
	Slide 11: Arrays
	Slide 12: Arrays
	Slide 13: Arrays
	Slide 14: Arrays
	Slide 15: Arrays
	Slide 16: Arrays
	Slide 17: Arrays
	Slide 18: Arrays
	Slide 19: In-Class Problem
	Slide 20: In-Class Problem
	Slide 21: Arrays
	Slide 22: Memory
	Slide 23: In-Class Problem
	Slide 24: Arrays
	Slide 25: In-Class Problem
	Slide 26: Arrays
	Slide 27: Arrays
	Slide 28: Arrays
	Slide 29: In-Class Problem
	Slide 30: Arrays
	Slide 31: Arrays
	Slide 32: Arrays
	Slide 33: Arrays
	Slide 34: Arrays
	Slide 35: Jagged Array
	Slide 36: Jagged Array Example
	Slide 37: Memory
	Slide 38: Memory
	Slide 39: Memory
	Slide 40: Memory
	Slide 41: Arrays of Reference Types
	Slide 42: for-each
	Slide 43: for-each
	Slide 44: Iterators
	Slide 45: Iterators
	Slide 46: Iterators
	Slide 47: Iterators
	Slide 48: class - Arrays
	Slide 49: class - ArrayList
	Slide 50: class - ArrayList
	Slide 51: Review
	Slide 52: End of Slides

